Math 247A Lecture 15 Notes

Daniel Raban

February 10, 2020

1 Riesz Tranforms and Calderón-Zygmund Convolution Kernels

1.1 Riesz tranforms

Last time, we proved the Sobolev embedding theorem:

Theorem 1.1 (Sobolev embedding). For $f \in \mathcal{S}(\mathbb{R}^d)$ and 0 < s < d, we have

$$||f||_q \lesssim |||\nabla|^s f||_p$$

whenever $\frac{1}{p} = \frac{1}{q} + \frac{s}{d}$. The implicit constant is independent of f.

In particular,

$$||f||_q \lesssim |||\nabla |f||_p, \qquad \frac{1}{p} = \frac{1}{q} + \frac{1}{d}.$$

However, the Fourier transform is not a local operator; it looks at the whole function. However, we can ask whether it is true that

$$||f||_q \lesssim ||\nabla f||_p \qquad \frac{1}{p} = \frac{1}{q} + \frac{1}{d}$$

with $1 . This would follow from boundedness of the Riesz transforms on <math>L^p$ for 1 .

Definition 1.1. For $1 \leq j \leq d$ and $f \in \mathcal{S}(\mathbb{R}^d)$, we define the **Riesz transforms** as

$$\widehat{R_j f}(\xi) = m_j(\xi)\widehat{f}(\xi) = -\frac{i\xi_j}{|\xi|}\widehat{f}(\xi).$$

In other words, $R_j = -\frac{\partial_j}{|\nabla|}$.

We write

$$2\pi |\xi| = \sum_{j=1}^{d} m_j(\xi) \cdot 2\pi i \xi_j.$$

So

$$|\nabla| = \sum_{j=1}^{d} R_j \partial_j.$$

Then

$$||f||_q \lesssim |||\nabla|||_p \leq \sum_{j=1}^d ||R_j \partial_j f|| \lesssim \sum_{j=1}^d ||\partial_j f||_p \lesssim ||\nabla f||_p,$$

if we knew the Riesz transforms were bounded on L^p . (The last step comes from the fact that all finite dimensional vector space norms are equivalent.)

Remark 1.1. If we knew that the Riesz transforms are bounded on L^p for 1 , we could also conclude that the solution <math>u to the Poisson equation $-\Delta u = f$ satisfies $\partial_i \partial_k u \in L^p$ whenever $f \in L^p$. Indeed,

$$(\partial_j \partial_k u)^{\wedge}(\xi) = -4\pi^2 \xi_j \xi_k \widehat{u}(\xi) = -\frac{\xi_j \xi_k}{|\xi|^2} \widehat{f}(\xi) = m_j(\xi) m_k(\xi) \widehat{f}(\xi).$$

So $\partial_j \partial_k u = R_j R_k f$.

How do we prove boundedness of Riesz transforms?

Definition 1.2. A function $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ is a **Calderón-Zygmund convolution** kernel if it satisfies:

- 1. $|K(x)| \lesssim |x|^{-d}$ uniformly for |x| > 0.
- 2. $\int_{R_1 \le |x| \le R_2} L(x) dx = 0$ for all $0 < R_1 < R_2 < \infty$ (cancellation condition).
- 3. $\int_{|x|>2|y|} |K(x+y)-K(x)| dx \lesssim 1$ uniformly for $y \in \mathbb{R}^d$ (regularity condition).

Example 1.1. The Riesz tranforms correspond to Calderón-Zygmund convolution kernels.

$$m_j = -\frac{i\xi_j}{|\xi|} \implies k_j(x) = m_j^{\vee}(x) = -\frac{1}{2\pi}\partial_j \left[\frac{\pi^{-(d-1)/2}\Gamma((d-1)/2)}{\pi^{-1/2}\Gamma(1/2)}\right]^{(d-1/2)} \sim_d \frac{x_j}{|x|^{d+1}}.$$

We have

1. $|k_j(x)| \lesssim x^{-d}$ uniformly in |x| > 0.

- 2. $\int_{R_1 < |x| < R_2} k_j(x) dx = 0$ for all $0 < R_1 < R_2 < \infty$ because it is odd in x_j .
- 3. By the fundamental theorem of calculus,

$$\int_{|x| \ge 2|y|} |k_j(x+y) - k_j(x)| \, dx \le \int_{|x| > 2|y|} |y| \int_0^1 |\nabla k_j(x+\theta y)| \, d\theta \, dx$$

For |x| > 2y and $\theta \in (0,1)$, $|x|/2 \le |x| - |y| \le |x + \theta y| \le |x| + |y| \le 3|x|/2$.

$$\lesssim \int_{|x|>2|y|} |y| \frac{1}{|x|^{d+1}} dx$$

$$\lesssim |y| \cdot \frac{1}{|y|} \lesssim 1.$$

More generally, we have proved the following.

Lemma 1.1. If $|\nabla K(x)| \lesssim |x|^{-(d+1)}$ uniformly for |x| > 0, then K satisfies the regularity condition.

1.2 L^2 -boundedness of convolution with Calderón-Zygmund convolution kernels

Here is a lemma we need.

Lemma 1.2. Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ be a Calderón-Zygmund convolution kernel. For $\varepsilon > 0$, let $K_{\varepsilon} = K \mathbb{1}_{\{\varepsilon \leq |x| \leq 1/\varepsilon\}}$. Then K_{ε} is a Calderón-Zygmund convolution kernel.

Proof. $|k_{\varepsilon}(x)| \lesssim |k(x)| \lesssim |x|^{-d}$ uniformly for |x| > 0. For the second condition,

$$\int_{R_1 \le |x| \le R_2} K_{\varepsilon}(x) dx = \int_{\max\{R_1, \varepsilon\} \le |x| \le \min\{R_2, 1/\varepsilon\}} K(x) dx = 0, \quad \forall 0 < R_1 < R_2 < \infty.$$

For the third condition,

$$\int_{|x|>2|y|} |K_{\varepsilon}(x+y) - K_{\varepsilon}(y)| \, dx \leq \int_{\substack{\varepsilon \leq |x| \leq 1/\varepsilon \\ |x|>2|y|}} |K_{\varepsilon}(x+y) - K_{\varepsilon}(y)| \, dx$$

$$+ \int_{\substack{\varepsilon \leq |x| \leq 1/\varepsilon \\ |x|>2|y|}} |K_{\varepsilon}(x+y) - K_{\varepsilon}(y)| \, dx$$

$$+ \int_{\substack{\varepsilon \leq |x| \leq 1/\varepsilon \\ |x|>2|y|}} |K_{\varepsilon}(x+y)| \, dx$$

$$+ \int_{\substack{\varepsilon > |x| \text{ or } x>1/\varepsilon \\ |x|>2|y|}} |K_{\varepsilon}(x+y)| \, dx.$$

Look at I: If $|x+y| < \varepsilon$, then $|x| \le |x+y| + |y| \le |x+y| + |x|/2$, so $|x| \le 2|x+y| \le 2\varepsilon$. The contribution is at most

$$\int_{\varepsilon \le |x| \le 2\varepsilon} |K(x)| \, dx \lesssim \int_{\varepsilon \le |x| \le 2\varepsilon} |x|^{-d} \, dx \lesssim 1,$$

uniformly in $\varepsilon > 0$.

If $|x+y| > 1/\varepsilon$, then $|x| \ge |x+y| - |y| \ge |x+y| - |x|/2$, so $|x| \ge \frac{2}{3}|x+y| \ge \frac{2}{3\varepsilon}$. The contribution is at most

$$\int_{\frac{2}{3\varepsilon} \le |x| \le \frac{1}{\varepsilon}} |K(X)| \, dx \lesssim 1,$$

uniformly in $\varepsilon > 0$. Similarly, II $\lesssim 1$ uniformly in $\varepsilon > 0$ and $y \in \mathbb{R}^d$.

Theorem 1.2. Ket $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ be a Calderón-Zygmund convolution kernel. For $\varepsilon > 0$, let $K_{\varepsilon} = K \mathbb{1}_{\{\varepsilon < |x| < 1/\varepsilon\}}$. Then

$$||K_{\varepsilon} * f||_2 \lesssim ||f||_2$$

uniformly for $\varepsilon > 0$, $f \in L^2$. Consequently, $f \mapsto K * f$ (which is the L^2 limit as $\varepsilon \to 0$ of $K_{\varepsilon} * f$) extends continuously from $\mathcal{S}(\mathbb{R}^d)$ to a bounded map on $L^2(\mathbb{R}^d)$.

Proof.

$$||K_{\varepsilon} * f||_{2} = ||\widehat{K_{\varepsilon} * f}||_{2}$$

$$= ||\widehat{K_{\varepsilon}}\widehat{f}||_{2}$$

$$\leq ||\widehat{K_{\varepsilon}}||_{\infty} ||whf||_{2}$$

$$\leq ||\widehat{K_{\varepsilon}}||_{\infty} ||f||_{2}.$$

Fix $\xi \in \mathbb{R}^d$. Then

$$\widehat{K}_{\varepsilon}(\xi) = \int e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) dx$$

$$= \int_{|x| \le 1/|\xi|} e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) dx + \int_{|x| > 1/|\xi|} e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) dx.$$

Now observe that by condition 2 of the definition of the Calderón-Zygmund convolution kernel,

$$\left| \int_{\varepsilon \le |x| \le 1/|\xi|} e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) \, dx \right| = \left| \int_{|x| \le 1/|\xi|} (e^{-2\pi i x \cdot \xi} - 1) K_{\varepsilon}(x) \, dx \right|$$

By condition 1,

$$\lesssim \int_{|x| \le 1/|\xi|} |x| |\xi| |x|^{-d} \, dx$$

$$\lesssim |\xi| \frac{1}{|\xi|}$$
$$\lesssim 1.$$

On the other hand, we have

$$\begin{split} \int_{|x|>1/|\xi|} e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) \, dx &= \int_{|x|>1/|\xi|} \frac{1}{2} (1-e^{\pi i}) e^{-2 \ piix \cdot \xi} K_{\varepsilon}(x) \, dx \\ &= \int_{|x|>1/|\xi|} \frac{1}{2} e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) \, dx \\ &\quad - \frac{1}{2} \int_{|x|>1/|\xi|} e^{-2\pi i \xi (x-\xi/(2|\xi|^2)} K_{\varepsilon}(x) \, dx \\ &= \int_{|x|>1/|\xi|} \frac{1}{2} e^{-2\pi i x \cdot \xi} K_{\varepsilon}(x) \, dx \\ &\quad - \frac{1}{2} \int_{|x+\frac{\xi}{2|\xi|^2}|>\frac{1}{|\xi|}} e^{-2\pi i x \cdot \xi} K_{\varepsilon}\left(x+\frac{|xi|}{2|\xi|^2}\right) \, dx, \end{split}$$

which puts us into a position to make a change of variables and use condition 3. We will finish the proof next time. \Box